Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme.

نویسندگان

  • Anne T Perrotta
  • Timothy S Wadkins
  • Michael D Been
چکیده

In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility.

The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that init...

متن کامل

Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme.

Several small ribozymes carry out self-cleavage at a specific phosphodiester bond to yield 2',3'-cyclic phosphate and 5'-hydroxyl termini. Prior mechanistic and structural studies on the HDV ribozymes led to the proposal that the pK(a) of C75 is shifted toward neutrality, making it an effective general acid. Recent mechanistic studies on the hairpin ribozyme have led to models in which protonat...

متن کامل

Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis.

The hepatitis delta virus (HDV) is a human pathogen and satellite RNA of the hepatitis B virus. It utilizes a self-cleaving catalytic RNA motif to process multimeric intermediates in the double-rolling circle replication of its genome. Previous kinetic analyses have suggested that a particular cytosine residue (C(75)) with a pK(a) close to neutrality acts as a general acid or base in cleavage c...

متن کامل

Terbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme.

The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, an...

متن کامل

Structural roles of monovalent cations in the HDV ribozyme.

The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2006